MIT Delivers New Findings on Energy-harvesting Sensors

Sept. 27, 2011
New research points to a more advanced microelectromechinaical systems device, or MEMS, that can receive a wider range of vibrations and produce 100 times more power.
This post centers around new findings coming out of the Massachusetts Institute of Technology (MIT) on microelectromechinaical systems, or MEMS. Energy harvesting has been a very interesting topic of conversation within manufacturing because it supposes that mechanical vibrations from motors or other industrial equipment can produce a consistent energy source for other devices. For example, wireless sensors networks could be powered by vibrations from a pipeline in the field, instead of battery power. That's been a big issue in the adoption of wireless sensor networks. Past developments with energy harvesting have relied on piezoelectric (PZT) technology or multiple PZT layers on a microchip. However, PZT technology depends on mechanical vibrations within a certain frequency and outside of it, no power can be generated. Some have pushed for more "layers" on a chip to pick up more vibrations (or more energy), but that drives up costs and sensors need to be inexpensive for large deployments. These new MIT findings see a design that increases the device's frequency range or bandwidth, while maximizing the power (energy) density. MIT researchers put it through a series of vibration tests and have calculated that the device was able to generate 45 microwaves of power with just a single layer of PZT--an improvement of two orders of magnitude compared to current designs, says MIT. The MIT team published its results in the Aug. 23rd online edition of Applied Physics Letters. >> Click here to read the MIT ENERGY-harvesting research paper.

Sponsored Recommendations

Strategizing for sustainable success in material handling and packaging

Download our visual factory brochure to explore how, together, we can fully optimize your industrial operations for ongoing success in material handling and packaging. As your...

A closer look at modern design considerations for food and beverage

With new and changing safety and hygiene regulations at top of mind, its easy to understand how other crucial aspects of machine design can get pushed aside. Our whitepaper explores...

Fueling the Future of Commercial EV Charging Infrastructure

Miguel Gudino, an Associate Application Engineer at RS, addresses various EV charging challenges and opportunities, ranging from charging station design strategies to the advanced...

Condition Monitoring for Energy and Utilities Assets

Condition monitoring is an essential element of asset management in the energy and utilities industry. The American oil and gas, water and wastewater, and electrical grid sectors...