Engineering School Innovations: Fuel from Waste Plastic

Sept. 6, 2012
Student at the University of British Columbia uses Honeywell’s Unisim design simulation software to model the pyrolysis process by which waste plastic can be turned into synthetic crude oil.

Project: Help prove the economic and procedural viability of pyrolysis to turn plastic into fuel.

College: University of British Columbia, Chemical & Biological Engineering department

Student: Bryan Gene (with help from advisor Dr. Dusko Posarac).

Description
Engineering student Bryan Gene used Honeywell’s UniSim design simulation software to effectively model pyrolysis – a process that can be used to convert plastic waste ordinarily sent to landfills into a synthetic crude oil. Using the software’s existing database, Gene characterized non-conventional plastics and produced preliminary models for all major units of the pyrolysis process.

Two factors contributed to what Gene saw as the need for further viability testing of pyrolysis:
• Limited literature and resources are available for modeling mixed plastic pyrolysis;
• Economics of pyrolysis are highly dependent on feed stock quality and operating conditions.
Gene believes that advances in process simulations and economic analysis can help overcome these two factors and stimulate growth and development of pyrolysis.

Reasons behind Gene’s use of Honeywell’s Unisim for the pyrolysis-modeling project include:
• The software’s built-in petroleum properties and characteristics;
• Using its database to discover ways to characterize non-conventional plastics; and
• To produce accurate preliminary models for all major units of the process.

To construct his pyrolysis model, Gene tailored the UniSim Design software to the pyrolysis process.  He then modeled the pyrolysis reaction and the plastic feedstock with the software’s Oil Manager. Following this initial modeling, the separation of the synthetic crude pyrolysis product into petroleum grade cuts in a distillation column was modeled. Finally, UniSim’s Exchanger Design and Rating feature was used to construct a detailed heating model.

The video below shows Gene’s presentation. Each slide shown in the video from Gene’s presentation is descriptive and details his reasons for embarking on the project and how he did it. Please note that there is no audio associated with this video; each slide after intro slide holds for 15 seconds for ease of reading.
 

Companies in this Article

Sponsored Recommendations

Strategizing for sustainable success in material handling and packaging

Download our visual factory brochure to explore how, together, we can fully optimize your industrial operations for ongoing success in material handling and packaging. As your...

A closer look at modern design considerations for food and beverage

With new and changing safety and hygiene regulations at top of mind, its easy to understand how other crucial aspects of machine design can get pushed aside. Our whitepaper explores...

Fueling the Future of Commercial EV Charging Infrastructure

Miguel Gudino, an Associate Application Engineer at RS, addresses various EV charging challenges and opportunities, ranging from charging station design strategies to the advanced...

Condition Monitoring for Energy and Utilities Assets

Condition monitoring is an essential element of asset management in the energy and utilities industry. The American oil and gas, water and wastewater, and electrical grid sectors...