Additive Manufacturing Disrupts Automotive Industry

July 22, 2019
Though not going to replace traditional manufacturing methods anytime soon, additive manufacturing is being adopted across many industries, including automotive, making an impact in how these industries will look in the future.

Additive manufacturing (AM) technology is being adopted across many different industries, providing unique advantages and challenges for each. The automotive and aerospace and defense industries were the two largest markets for additive manufacturing in 2018, according to ARC Advisory Group research. Combined, these two industries accounted for more than one-third of industrial system sales by revenue. Here, we’ll focus on the technology’s impact on the global automotive industry.

Prototypes and development

Many car manufacturers and automotive suppliers still use AM technology only to develop and produce functional prototype components and design samples. This drastically reduces development times and costs, but it does not support mass production.

The 3D printing of tools used in traditional manufacturing processes is developing rapidly. This offers tremendous potential for automotive OEMs and tier-one suppliers alike, since it can significantly shorten development cycles. As a result, AM could help the automotive industry optimize the capital-intensive development of new products. Contrary to popular belief, AM is not the holy grail when it comes to reducing costs, and cost reductions are not the main justification for implementing AM. The advantages of AM lie elsewhere, namely in the ability to produce complex and/or light-weight structures. Because of this, AM will not entirely replace traditional manufacturing methods in the automotive industry, but complement them.

Quality, process, and automation

AM must still overcome several hurdles related to quality assurance and productivity. Currently, we’re seeing a very low degree of automation in AM, where process stability is not always guaranteed. But several industry initiatives aim to overcome these hurdles.

These include the NextGenAM project in Germany, a joint initiative between automotive supplier Daimler, aerospace supplier Premium Aerotec, and technology provider EOS. The project aims to develop a complete automated system that produces aluminum components for the automotive and aerospace industries. The project’s pilot plant consists of machines for additive production, post-processing, and quality assurance. The plant automates and integrates the interactions between most steps in the process, enabling complex, lightweight components to be produced automatically with a high degree of stability.

Post-processing costs remain a big issue. Most of today’s AM technologies require separate post-processing steps, although this depends on the application. This can include removing support structures, machining to tolerances, or treating surfaces. Each post-processing step represents additional costs and requires additional tools, manpower, and expertise.

During quality assurance, the reproducibility of the components must be ensured. This can only be achieved by standardizing and safeguarding processes and materials and by further development of the machines, with a focus on reliability and speed. Machines must reach a demonstrable level of technology maturity and be easily integrated into the manufacturer’s overall automation environment.

Integration for series production

For future series production, AM could support the move away from long assembly lines to island production. Instead of one long production line, manufacturers could use small AM cell units for production.

AM accounts for only 0.05 percent of the total production market in the automotive sector, according to a recent study from the Fraunhofer Research Institution for Casting, Composite and Processing Technology (IGCV). IGCV concluded that 1-5 percent of all components produced to date were suitable for economical additive series production in the short and/or medium term, showing a clear gap between what would be possible today with the available technology and what has already been tapped.

That's why companies and research institutions are working hard to translate 3D printing into industrialized, highly automated production processes for the automotive industry. The Industrialization and Digitalization of Additive Manufacturing (IDAM) project from Germany is a good example of this, with 12 partners laying the foundation for further technological development and integration of AM in series production for the automotive sector.

In the future, the AM production lines should make it possible to produce at least 50,000 components per year in common parts production and more than 10,000 individual and spare parts under the highest quality and cost pressure. By taking a holistic view of the automotive production line, the project participants aim to reduce the manual share of activities along the process chain from about 35 percent to less than 5 percent. In addition, the unit costs of the 3D-printed metal components are to be more than halved.

More standards needed

Even though AM processes are still comparatively young, it is no longer possible to imagine the automotive industry without them.

The technology is maturing very quickly, increasing the possibilities of material diversity and applications. These further increase the need for worldwide standards, especially from the end user’s point of view. These are necessary to further advance the development of 3D printers and expand the areas of application of AM processes.

For more information on the recent ARC market research on additive manufacturing, visit http://awgo.to/addmanu.

>> Fabian Wanke is an analyst for ARC’s automation team in Europe, and is based in Dresden, Germany. He specializes in the automotive, aerospace and polymers industries, as well as economic modeling and forecasting. He has a special focus on industrial PCs and operator panels, and is also responsible for the European automotive research. Will Hastings is an analyst for ARC based out of Boston, Massachusetts. His expertise lies in digitization, industry

Companies in this Article

Sponsored Recommendations

Wireless Data Acquisition System Case Studies

Wireless data acquisition systems are vital elements of connected factories, collecting data that allows operators to remotely access and visualize equipment and process information...

Strategizing for sustainable success in material handling and packaging

Download our visual factory brochure to explore how, together, we can fully optimize your industrial operations for ongoing success in material handling and packaging. As your...

A closer look at modern design considerations for food and beverage

With new and changing safety and hygiene regulations at top of mind, its easy to understand how other crucial aspects of machine design can get pushed aside. Our whitepaper explores...

Fueling the Future of Commercial EV Charging Infrastructure

Miguel Gudino, an Associate Application Engineer at RS, addresses various EV charging challenges and opportunities, ranging from charging station design strategies to the advanced...