Composite Engineering and Manufacturing Solution Helps Build SpaceX

June 4, 2012
SpaceX achieves higher product quality through tight collaboration between design and manufacturing and unprecedented time and cost savings.

For the better part of five decades, commercial access to space has been limited by the high cost of flight operations. However, Space Exploration Technologies Corp. (SpaceX) has rewritten the rules of the game by adopting a new business model and cutting-edge technologies to enhance reliability and reduce the cost of space access.

SpaceX’s Falcon Heavy (currently under development) will be the world’s most powerful rocket, with more than twice the payload-to-orbit capacity of the space shuttle, but at only one-third the cost. It is expected to be the first rocket to break the US$1,000-per-pound-to-orbit barrier, less than a tenth as much as the NASA space shuttle.

One significant way SpaceX decided to enhance the performance of its Falcon rocket and Dragon capsule was by adopting advanced composite materials. As composites have received growing acceptance in a variety of industries, including aerospace, the space industry has taken note. SpaceX was no exception. It recognized that composites could significantly enhance performance by improving the strength-to-weight ratio of the materials used to construct its spacecraft.

Fibersim proves invaluable

Once that decision was made, SpaceX conducted an evaluation of available composites engineering solutions and decided that Siemens PLM ( Software’s Fibersim software was the best fit for its design and manufacturing environment.

“Based on our comparison, there was no question that Fibersim was definitely the best choice on the market for designing and manufacturing composite components to suit our needs,” says Kirk Matthes, SpaceX’s design manager.

SpaceX’s business model is derived from the philosophy that simplicity, low-cost and reliability can go hand-in-hand. By eliminating the traditional layers of management and subcontractors, the company has reduced costs while speeding decision making and delivery. Likewise, by keeping the vast majority of manufacturing in-house, SpaceX reduced costs, kept tighter control of quality, and ensured a tight feedback loop between the design and manufacturing teams. And by concentrating on simple, proven designs with a primary focus on reliability, the company has reduced the costs associated with complex systems operating at the margin. Fibersim has proved invaluable within that paradigm.

“Time is always of the essence for us, so Fibersim’s ability to take us from art to part so rapidly was a critical consideration in our decision to purchase the software,” says Chris Thompson, vice president of structures engineering for SpaceX.

“But it is about more than just speed. Fibersim improves product quality by providing accurate engineering information to the manufacturing floor, which also helps the repeatability of the manufacturing process. This assures that parts fit when they come off the tool.”

Working in parallel

SpaceX has used Fibersim to design and manufacture a variety of composite parts on both the Falcon rocket and the Dragon capsule. Fibersim is being used to develop production fiber placement diagrams and laser projection files. It is also used to assist with actual fiber placement for the spacecraft’s thermal protection system, including the heat shield, exterior panels, insulating layers on the rocket and spacecraft, and several panels around the nose cone and engines.

“Fibersim enables us to work in parallel between design and manufacturing, which is very important to us since we’re such a fast-paced organization,” notes Derek Lies, structural designer for composite panels used on the Dragon capsule. “It definitely helped improve the collaboration between design and manufacturing. And we also found that Fibersim very nicely captured the vocabulary of composites and provided an intuitive workflow, which enables our people who aren’t trained in composites to get up and running very quickly.”

Providing strong support

As a newcomer to composites, SpaceX was also concerned about finding a software vendor that had significant composites experience so it could receive the necessary guidance and support as it embarked on working with new materials.

“Siemens PLM Software’s support is excellent,” says Matthes. “In fact, it is the best support I’ve ever seen. Anytime we have a problem, we can send a model to the Siemens PLM Software’s technical consultant and he helps us get through the issue. Again, as a fast-paced organization, we must continually be moving forward, and Siemens PLM Software’s responsiveness and expertise enables us to do just that.”

Siemens PLM Software also embeds the know-how derived from its years of experience in the composites industry to provide intuitive, easy-to-use features for the design of a variety of composite structures.

The fact that this is “baked-in” to the software flattens the learning curve and makes the learning experience for new users fast and easy. This greatly aids in training new users who may not have deep experience in designing with composite materials.


Companies in this Article

Sponsored Recommendations

Measurement instrumentation for improving hydrogen storage and transport

Hydrogen provides a decarbonization opportunity. Learn more about maximizing the potential of hydrogen.

Learn About: Micro Motion™ 4700 Config I/O Coriolis Transmitter

An Advanced Transmitter that Expands Connectivity

Learn about: Micro Motion G-Series Coriolis Flow and Density Meters

The Micro Motion G-Series is designed to help you access the benefits of Coriolis technology even when available space is limited.

Micro Motion 4700 Coriolis Configurable Inputs and Outputs Transmitter

The Micro Motion 4700 Coriolis Transmitter offers a compact C1D1 (Zone 1) housing. Bluetooth and Smart Meter Verification are available.