Sercos III Specification Updated

May 5, 2012
The Sercos network organization (www.sercos.com) has released an update to the specification for the Sercos III Real-time Ethernet networking protocol.

The V1.3 specification broadens the functionality and the range of applications, and acknowledges trends in machine and plant design. The extensions are compatible with the existing specification to ensure interoperability of devices from different manufacturers. 

Following the lead of electronic drives, hydraulics and pneumatics are turning more and more toward digitally controlled modules. This increases flexibility and shifts tasks previously solved by mechanical means to software solutions. The Sercos organization recognizes the importance of this trend and has extended the existing Sercos drive profile such that electric, hydraulic and pneumatic drives now are supported across different technologies.

Two new profiles have been added to the Sercos specification. The Energy Profile defines parameters and commands for the reduction of energy consumption in a uniform and vendor-independent manner. An Encoder Profile makes the interface of absolute and incremental encoders available to all devices on a Sercos network.

Also in V1.3, the following new services are specified at the protocol level: oversampling and time-stamping.

The oversampling procedure allows the acquisition and transmission of equidistant values faster than the configured bus or connection cycle. This increases the process control intricacy in extremely time-critical applications, such as laser applications, because it allows more data to be collected and command values to be communicated at a faster speed. Measurement methods are integrated directly into the protocol, thereby making it possible to access these mechanisms across different manufacturers and independently of the product.

In addition, the specification defines a time-stamping procedure for the event-triggered acquisition of values with corresponding time stamps, as well as the time-triggered activation of command values. This function is event-controlled, promptly transmitting defined events such as certain measurement values to the controller and switching outputs independently from the clock cycle. This increases process stability in complex solutions such as those needed in semiconductor or solar manufacturing. 

Companies in this Article

Sponsored Recommendations

Put the Plant Floor in Your Pocket with Ignition Perspective

Build mobile-responsive HTML applications that run natively on any screen.

Ignition: Industrial-Strength System Security and Stability

Ignition is built on a solid, unified architecture and proven, industrial-grade security technology, which is why industrial organizations all over the world have been trusting...

Iron Foundry Gains Competitive Edge & Increases Efficiency with Innovative Technology

With help from Artek, Ferroloy implemented Ignition to digitally transform their disconnected foundry through efficient data collection and analysis while integrating the new ...

Empowering Data Center Growth: Leveraging Ignition for Scalability and Efficiency

Data center growth has exploded over the past decade. Initially driven by organizations moving their computer assets to the cloud, this trend has only accelerated. With the rise...